In Class Exercise 3: Analytical Mapping

Published

March 6, 2023

Modified

March 6, 2023

Overview

Learning Outcome

Learning how to use

  • Importing geospatial data in rds format into R environment.

  • Creating cartographic quality choropleth maps by using appropriate tmap functions.

  • Creating rate map

  • Creating percentile map

  • Creating boxmap

Getting Started

Installing and loading of packages

pacman::p_load(tmap, tidyverse, sf)

Importing of data

NGA_wp <- read_rds("data/rds/NGA_wp.rds")

Basic Choropleth Mapping

Visualising distribution of non-functional water point

p1 <- tm_shape(NGA_wp) +
  tm_fill("wp_functional",
          n = 10,
          style = "equal",
          palette = "Blues") +
  tm_borders(lwd = 0.1,
             alpha = 1) +
  tm_layout(main.title = "Distribution of functional water point by LGAs",
            legend.outside = FALSE)
p2 <- tm_shape(NGA_wp) +
  tm_fill("total_wp",
          n = 10,
          style = "equal",
          palette = "Blues") +
  tm_borders(lwd = 0.1,
             alpha = 1) +
  tm_layout(main.title = "Distribution of total  water point by LGAs",
            legend.outside = FALSE)
tmap_arrange(p2, p1, nrow = 1)

Choropleth Map for Rates

Deriving Proportion of Functional Water Points and Non-Functional Water Points

NGA_wp <- NGA_wp %>%
  mutate(pct_functional = wp_functional/total_wp) %>%
  mutate(pct_nonfunctional = wp_nonfunctional/total_wp)
Note

mutate() from dplyr package is used to derive two fields, namely pct_functional and pct_nonfunctional.

Plotting map of rate

tm_shape(NGA_wp) +
  tm_fill("pct_functional",
          n = 10,
          style = "equal",
          palette = "Blues",
          legend.hist = TRUE) +
  tm_borders(lwd = 0.1,
             alpha = 1) +
  tm_layout(main.title = "Rate map of functional water point by LGAs",
            legend.outside = TRUE)

Extreme Value Maps

To highlight extreme values at lower and upper end of the scale

Percentile Map

The percentile map is a special type of quantile map with six specific categories: 0-1%,1-10%, 10-50%,50-90%,90-99%, and 99-100%.

Data Prep

Step 1: Exclude NA records

NGA_wp <- NGA_wp %>%
  drop_na()

Step 2: Creating customised classification and extracting values

percent <- c(0,.01,.1,.5,.9,.99,1)
var <- NGA_wp["pct_functional"] %>%
  st_set_geometry(NULL)
quantile(var[,1], percent)
       0%        1%       10%       50%       90%       99%      100% 
0.0000000 0.0000000 0.2169811 0.4791667 0.8611111 1.0000000 1.0000000 
Note

When variables are extracted from an sf data.frame, the geometry is extracted as well. For mapping and spatial manipulation, this is the expected behavior, but many base R functions cannot deal with the geometry. Specifically, the quantile() gives an error. As a result st_set_geomtry(NULL) is used to drop geomtry field.

Creating get.var function

  • arguments:

    • vname: variable name (as character, in quotes)

    • df: name of sf data frame

  • returns:

    • v: vector with values (without a column name)
get.var <- function(vname,df) {
  v <- df[vname] %>% 
    st_set_geometry(NULL)
  v <- unname(v[,1])
  return(v)
}

A percentile mapping function

percentmap <- function(vnam, df, legtitle=NA, mtitle="Percentile Map"){
  percent <- c(0,.01,.1,.5,.9,.99,1)
  var <- get.var(vnam, df)
  bperc <- quantile(var, percent)
  tm_shape(df) +
  tm_polygons() +
  tm_shape(df) +
     tm_fill(vnam,
             title=legtitle,
             breaks=bperc,
             palette="Blues",
          labels=c("< 1%", "1% - 10%", "10% - 50%", "50% - 90%", "90% - 99%", "> 99%"))  +
  tm_borders() +
  tm_layout(main.title = mtitle, 
            title.position = c("right","bottom"))
}

Test drive percentile mapping function

percentmap("total_wp", NGA_wp)

Box Map

ggplot(data = NGA_wp,
       aes(x = "",
           y = wp_nonfunctional)) +
  geom_boxplot()

Creating boxbreaks function

  • arguments:

    • v: vector with observations

    • mult: multiplier for IQR (default 1.5)

  • returns:

    • bb: vector with 7 break points compute quartile and fences
boxbreaks <- function(v,mult=1.5) {
  qv <- unname(quantile(v))
  iqr <- qv[4] - qv[2]
  upfence <- qv[4] + mult * iqr
  lofence <- qv[2] - mult * iqr
  # initialize break points vector
  bb <- vector(mode="numeric",length=7)
  # logic for lower and upper fences
  if (lofence < qv[1]) {  # no lower outliers
    bb[1] <- lofence
    bb[2] <- floor(qv[1])
  } else {
    bb[2] <- lofence
    bb[1] <- qv[1]
  }
  if (upfence > qv[5]) { # no upper outliers
    bb[7] <- upfence
    bb[6] <- ceiling(qv[5])
  } else {
    bb[6] <- upfence
    bb[7] <- qv[5]
  }
  bb[3:5] <- qv[2:4]
  return(bb)
}

Creating get.var function

  • arguments:

    • vname: variable name (as character, in quotes)

    • df: name of sf data frame

  • returns:

    • v: vector with values (without a column name)
get.var <- function(vname,df) {
  v <- df[vname] %>% st_set_geometry(NULL)
  v <- unname(v[,1])
  return(v)
}

Testing created function

var <- get.var("wp_nonfunctional", NGA_wp) 
boxbreaks(var)
[1] -56.5   0.0  14.0  34.0  61.0 131.5 278.0

Boxmap function

boxmap <- function(vnam, df, 
                   legtitle=NA,
                   mtitle="Box Map",
                   mult=1.5){
  var <- get.var(vnam,df)
  bb <- boxbreaks(var)
  tm_shape(df) +
    tm_polygons() +
  tm_shape(df) +
     tm_fill(vnam,title=legtitle,
             breaks=bb,
             palette="Blues",
          labels = c("lower outlier", 
                     "< 25%", 
                     "25% - 50%", 
                     "50% - 75%",
                     "> 75%", 
                     "upper outlier"))  +
  tm_borders() +
  tm_layout(main.title = mtitle, 
            title.position = c("left",
                               "top"))
}
tmap_mode("plot")
boxmap("wp_nonfunctional", NGA_wp)

Recode Zero

Recode LGAs with zero total water point into NA.

NGA_wp <- NGA_wp %>%
  mutate(wp_functional = na_if(
    total_wp, total_wp < 0))