::p_load(sf, sfdep, tmap, tidyverse) pacman
In Class Exercise 6
1. Getting started
1.1 Importing Packages
1.2 Importing Shapefile Data
<- st_read(dsn = "data/geospatial",
hunan layer = "Hunan")
Reading layer `Hunan' from data source
`C:\Users\Daniel\Desktop\Github\IS419\IS415-GAA\In-Class_Ex\In-Class_Ex06\data\geospatial'
using driver `ESRI Shapefile'
Simple feature collection with 88 features and 7 fields
Geometry type: POLYGON
Dimension: XY
Bounding box: xmin: 108.7831 ymin: 24.6342 xmax: 114.2544 ymax: 30.12812
Geodetic CRS: WGS 84
1.3 Importing CSV file
<- read_csv("data/aspatial/Hunan_2012.csv") hunan2012
1.4 Combining Both Data Frame by using left join
<- left_join(hunan,hunan2012)%>%
hunan_GDPPC select(1:4, 7, 15)
1.5 Visualising
tmap_mode("plot")
tm_shape(hunan_GDPPC) +
tm_fill("GDPPC",
style = "quantile",
palette = "Blues",
title = "GDPPC") +
tm_layout(main.title = "Distribution of GDP per capita by distribution",
main.title.position = "center",
main.title.size = 0.6,
legend.height = 0.45,
legend.width = 0.35,
frame = TRUE) +
tm_borders(alpha = 0.5) +
tm_compass(type = "8star", size = 2) +
tm_scale_bar() +
tm_grid(alpha = 0.2)
2. Contiguity Neighbor method
<- hunan_GDPPC %>%
cn_queen mutate(nb = st_contiguity(geometry),
.before = 1)
2.2 Derive contiguity neighbour list using Rook’s method
<- hunan_GDPPC %>%
cn_rook mutate(nb = st_contiguity(geometry),
queen = FALSE,
.before = 1)
3. Computing contiguity weights
3.1 Queen’s method
<- hunan_GDPPC %>%
wm_q mutate(nb = st_contiguity(geometry),
wt = st_weights(nb),
.before = 1)
3.2 Rooks method
<- hunan_GDPPC %>%
wm_r mutate(nb = st_contiguity(geometry),
queen = FALSE,
wt = st_weights(nb),
.before = 1)